

    
      
          
            
  
MR Sim

MR Sim is a library for simulating material removal from abrasive material removal
processes. The library is built to be modular to allow different models, tool types,
tool shapes, and pressure distributions to be simulated and included.


Contents:


	Example 1

	Example 2






Util


	
mr_sim.create_simulation(*classes)

	A helper method to combine classes.

This method combines classes representing different elements of a material
removal simulation. This allows different simulations to be easily constructed.


	Parameters

	*classes – Variable length argument list of classes to subclass.



	Returns

	A class which is a subclass of all classes provided as arguments.





Examples

For example, to use the Preston equation to simulate a round orbital sander
sanding a flat surface, the following can be used.

>>> from mr_sim import *
>>> Simulation = create_simulation(Flat, Round, Orbital, Preston)
>>> simulation = Simulation(0.3, 0.1, radius=0.05, eccentricity=0.005, dt=0.001, kp=1e-9)





In this example radius sets the radius of the sander defined in the
Round class, eccentricity sets the eccentricity of the orbital
sander defined in the Orbital class, dt sets the timestep in the
Base class, which is a superclass of all other classes, and kp
sets the constant in the Preston Equation class, Preston.

The same result can be accomplished manually.

>>> from mr_sim import *
>>> Simulation(Flat, Round, Orbital, Preston):
>>>     pass
>>> simulation = Simulation(0.3, 0.1, radius=0.05, eccentricity=0.005, dt=0.001, kp=1e-9)





This approach would be particularly useful if additional functionality
needs to be added to the simulation class.







Base


	
class mr_sim.base.Base(size_x, size_y, dx=0.001, dy=0.001, dt=1, auto_velocity=False)

	The base simulation class.

This is the base simulation class. It is combined with other classes to define
other attributes about the simulation.


	
X

	A 2D array of the X coordinates of the part with the
origin at the center of the part surface.


	Type

	numpy.ndarray










	
Y

	A 2D array of the Y coordinates of the part with the
origin at the center of the part surface.


	Type

	numpy.ndarray










	
profile

	A 2D array of the depth of material removed from
the part surface.


	Type

	numpy.ndarray










	
dt

	The timestep used in the simulation.


	Type

	float










	
auto_vel

	If True automatically calculate the linear velocity
of the tool moving over the part surface.


	Type

	bool










	
x

	The current X location of the center of the tool in relation
to the center of the part surface.


	Type

	float










	
y

	The current Y location of the center of the tool in relation
to the center of the part surface.


	Type

	float










	
vl_x

	The current X direction velocity of the tool moving over the
part surface.


	Type

	float










	
vl_y

	The current Y direction velocity of the tool moving over the
part surface.


	Type

	float










Note

Other classes must be used to include the shape and mrr methods needed
by this class.




	Parameters

	
	size_x (float) – The size of the part surface in the X direction.


	size_y (float) – The size of the part surface in the Y direction.


	dx (float) – The density of points to track in the X direction. Defaults
to 0.001.


	dy (float) – The density of points to track in the Y direction. Defaults
to 0.001.


	dt (float) – The simulation timestep. Defaults to 1.


	auto_velocity (bool) – If True automatically calculate the linear
velocity of the tool over the part surface.









	
local_grid()

	Returns a coordinate system centered at the tool origin.


	Returns

	The X, Y coordinate system shifted so the
origin is at the center of the tool.



	Return type

	numpy.ndarray, numpy.ndarray










	
plot(normalize=False, **kwargs)

	Plot the simulation result.

This function uses matplotlib to plot the result of the simulation in the
current figure.


	Parameters

	
	normalize (bool) – Normalize max depth of material removed to 1. Defaults
to False.


	**kwargs – Keyword arguments to be included in the call to the
matplotlib.pyplot.imshow function.






	Returns

	The AxesImage object of the plotted heatmap.



	Return type

	matplotlib.image.AxesImage










	
set_location(x=0, y=0)

	Set the current location of the center of the tool.

Sets the current location of the center of the tool with respect to the
middle of the part.


	Parameters

	
	x (float) – The X location of the tool. Defaults to 0.


	y (float) – The Y location of the tool. Defaults to 0.













	
set_velocity(x=0, y=0)

	Sets the current linear velocity of the tool over the part surface.


	Parameters

	
	x (float) – The X velocity of the tool. Defaults to 0.


	y (float) – The Y velocity of the tool. Defaults to 0.









Note

If auto_velocity was set to True this method is not requried.








	
step()

	Move the simulation forward one timestep.











Models


	
class mr_sim.models.Preston(*args, kp=1, **kwargs)

	A class implementing the Preston Equation for material removal simulation.

This class calculates material removal rate using the Preston Equation,

\(\dot{h}=k_ppv\),

where \(\dot{h}\) is the depth of material removed per unit time, \(k_p\) is a
constant known as the Preston coefficient, \(p\) is the contact pressure between
the tool and the workpiece, and \(v\) is the total speed of the tool rubbing the
workpiece.


Note

This class must be subclassed by a class providing the pressure and
velocity functions.




	
kp

	The value of the Preston coefficient, \(k_p\).


	Type

	float










	Parameters

	
	*args – Arguments to be passed on to superclasses.


	kp (float) – The Preston coefficient, \(k_p\). Defaults to 1.


	**kwargs – Keyword arguments to be passed on to superclasses.









	
mrr(x, y)

	Calculates the material removal rate.

This function returns the material removal rate for all locations on the
part surface using the Preston Equation.


	x (numpy.ndarray): A 2D array of the X coordinates of the part centered

	at the current tool location.



	y (numpy.ndarray): A 2D array of the Y coordinates of the part centered

	at the current tool location.






	Returns

	The material removal rate at all locations on the part
surface.



	Return type

	numpy.ndarray















Pressure Distributions


	
class mr_sim.pressure.Flat(*args, **kwargs)

	A class used to calculate the pressure applied to a flat surface.

This class determines the pressure applied to a flat surface from the normal force and torques applied to the tool.


Note

This class assumes that all points of the tool are in contact with the
part surface at all time.




	
force

	The normal force applied to the tool.


	Type

	float










	
torque_x

	The torque about the X axis applied to the tool.


	Type

	float










	
torque_y

	The torque about the Y axis applied to the tool.


	Type

	float










Note

This class requires area, Ix, and Iy to be set by a subclass.




	Parameters

	
	*args – Arguments to be passed on to superclasses.


	**kwargs – Keyword arguments to be passed on to superclasses.









	
pressure(x, y)

	Determine the pressure the tool applied to the part surface.

This function calculates the pressure applied at all points on the part
surface.


	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array of the pressure applied by the tool.



	Return type

	numpy.ndarray










	
set_force(force)

	Set the current normal force applied to the tool.


	Parameters

	force (float) – The current normal force.










	
set_torque(x=0, y=0)

	Set the current torques applied to the tool.


	Parameters

	
	x (float) – The current torque about the X axis. Defaults to 0.


	y (float) – The current torque about the Y axis. Defaults to 0.

















	
class mr_sim.pressure.ConstantCurvature(*args, kx=0, ky=0, stiffness=None, dx=0.001, dy=0.001, **kwargs)

	A class used to calculate the pressure applied to a surface with constant curvature.

This class determines the pressure applied to the surface from the
normal force.


Note

This class models the contact pressure as a paraboloid with the specified
curvature at the tool origin.




	
force

	The normal force applied to the tool.


	Type

	float










	
kx

	The curvature in the x direction.


	Type

	float










	
ky

	The curvature in the y direction.


	Type

	float










	
dx

	The x direction spacing of the grid.


	Type

	float










	
dy

	The y direction spacing of the grid.


	Type

	float










	
stiffness

	The stiffness of the tool.
This can be found as the Young’s modulus of the tool divided by
its thickness.


	Type

	float










	Parameters

	
	*args – Arguments to be passed on to superclasses.


	kx (float) – The curvature in the x direction. Defaults to 0.


	ky (float) – The curvature in the y direction. Defaults to 0.


	stiffness (float) – The stiffness of the sanding tool. Defaults to None.
This can be found as the Young’s modulus of the tool divided by
its thickness.


	dx (float) – The x direction spacing of the grid. Defaults to 0.001.


	dy (float) – The y direction spacing of the grid. Defaults to 0.001.


	**kwargs – Keyword arguments to be passed on to superclasses.






	Raises

	ValueError – If stiffness is None.






	
pressure(x, y)

	Determine the pressure the tool applied to the part surface.

This function calculates the pressure applied at all points on the part
surface.


	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array of the pressure applied by the tool.



	Return type

	numpy.ndarray






Note

This function uses closed form solutions if the shape is Round,
otherwise it uses scipy.optimize.minimize_scalar() which is slow.








	
set_curvature(kx=0, ky=0)

	Set the curvature of the surface.


	Parameters

	
	kx (float) – The curvature in the x direction. Defaults to 0.


	ky (float) – The curvature in the y direction. Defaults to 0.













	
set_force(force)

	Set the current normal force applied to the tool.


	Parameters

	force (float) – The current normal force.















Tool Shapes


	
class mr_sim.shapes.Round(*args, radius=None, **kwargs)

	A class representing a round tool for material removal simulations.

This class represents a round tool and calculates the section of the part
surface which the tool is in contact with.


	
r

	The tool radius.


	Type

	float










	
area

	The area of the tool.


	Type

	float










	
Ix

	The second moment of area of the tool in the X direction.


	Type

	float










	
Iy

	The second moment of area of the tool in the Y direction.


	Type

	float










Note

The class attributes are set automatically when the class is initialized,
and when the tool radius is set using the radius property. Setting
these values manually could lead to simulation errors.




	Parameters

	
	*args – Arguments to be passed on to superclasses.


	radius (float) – The radius of the tool. Defaults to None.


	**kwargs – Keyword arguments to be passed on to superclasses.






	Raises

	ValueError – If radius is not set.






	
radius

	Tool radius.


	Type

	float










	
shape(x, y)

	This function finds the section of the part the tool is in contact with.


	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array where True indicates the tool is in contact
with that portion of the part surface.



	Return type

	numpy.ndarray














	
class mr_sim.shapes.Rectangular(*args, width=None, height=None, **kwargs)

	A class representing a rectangular tool for material removal simulations.

This class represents a rectangular tool and calculates the section of the
part surface which the tool is in contact with.


	
width

	The tool width, in the X direction.


	Type

	float










	
height

	The tool height, in the Y direction.


	Type

	float










	
area

	The area of the tool.


	Type

	float










	
Ix

	The second moment of area of the tool in the X direction.


	Type

	float










	
Iy

	The second moment of area of the tool in the Y direction.


	Type

	float










Note

The class attributes are set automatically when the class is initialized,
and when the tool size is set using the set_size method. Setting
these values manually could lead to simulation errors.




	Parameters

	
	*args – Arguments to be passed on to superclasses.


	width (float) – The width of the tool, in the X direction. Defaults to
None.


	height (float) – The height of the tool, in the Y direction. Defaults
to None.


	**kwargs – Keyword arguments to be passed on to superclasses.






	Raises

	ValueError – If width or height is not set.






	
set_size(width, height)

	Set the size of the tool.


	Parameters

	
	width (float) – The width of the tool, in the X direction.


	height (float) – The height of the tool, in the Y direction.













	
shape(x, y)

	This function finds the section of the part the tool is in contact with.


	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array where True indicates the tool is in contact
with that portion of the part surface.



	Return type

	numpy.ndarray














	
class mr_sim.shapes.Square(*args, width=None, **kwargs)

	A class representing a square tool for material removal simulations.

This class represents a square tool and calculates the section of the
part surface which the tool is in contact with.


Note

This class simply inherits Rectangular and sets both width
and height to the same value.




	Parameters

	
	*args – Arguments to be passed on to superclasses.


	width (float) – The width of the tool. Defaults to
None.


	**kwargs – Keyword arguments to be passed on to superclasses.






	Raises

	ValueError – If width is not set.






	
set_size(width)

	Set the size of the tool.


	Parameters

	width (float) – The width of the tool.















Tool Types


	
class mr_sim.types.Orbital(*args, eccentricity=None, **kwargs)

	A class for simulating a random orbit sander.

This class includes the necessary methods for calculating the total velocity
of a random orbit sander.


	
eccentricity

	The eccentric distance of the sander.


	Type

	float










	
orbital_speed

	The current rotational speed of the eccentric link.


	Type

	float










	
rotational_speed

	The current rotational speed of the pad with
with respect to the part surface.


	Type

	float










	Parameters

	
	*args – Arguments to be passed on to superclasses.


	eccentricity (float) – The eccentric distance of the sander. Defaults to None.


	**kwargs – Keyword arguments to be passed on to superclasses.






	Raises

	ValueError – If eccentricity is not set.






	
set_speed(orbital_speed=0, rotational_speed=0)

	Sets the orbital and rotational speed.


	Parameters

	
	orbital_speed (float) – The current rotational speed of the eccentric
link. Defaults to 0.


	rotational_speed (float) – The current rotational speed of the pad with
with respect to the part surface. Defaults to 0.













	
velocity(x, y)

	Determines the velocity of the tool

Determines the total velocity of the tool with respect to the part sufrace.


Note

This is an approximation that should be more rigerously verified.




	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array of velocity on the part surface.



	Return type

	numpy.ndarray














	
class mr_sim.types.Belt(*args, **kwargs)

	A class for simulating a belt sander.

This class includes the necessary methods for calculating the total velocity
of a belt sander.


	
speed

	The current speed of the belt.


	Type

	float










	Parameters

	
	*args – Arguments to be passed on to superclasses.


	**kwargs – Keyword arguments to be passed on to superclasses.









	
set_speed(speed)

	Sets the speed of the belt.


	Parameters

	speed (float) – The current speed of the belt.










	
velocity(x, y)

	Determines the velocity of the tool

Determines the total velocity of the tool with respect to the part sufrace.


Note

This is an approximation that should be more rigerously verified.




	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array of velocity on the part surface.



	Return type

	numpy.ndarray














	
class mr_sim.types.Rotary(*args, **kwargs)

	A class for simulating a rotary abrasive tool.

This class includes the necessary methods for calculating the total velocity
of a rotary tool.


	
speed

	The current rotational speed of the tool.


	Type

	float










	Parameters

	
	*args – Arguments to be passed on to superclasses.


	**kwargs – Keyword arguments to be passed on to superclasses.









	
set_speed(speed)

	Sets the rotational speed of the tool.


	Parameters

	speed (float) – The current rotational speed of the tool.










	
velocity(x, y)

	Determines the velocity of the tool

Determines the total velocity of the tool with respect to the part sufrace.


Note

This is an approximation that should be more rigerously verified.




	Parameters

	
	x (numpy.ndarray) – A 2D array of the X coordinates of the part centered
at the current tool location.


	y (numpy.ndarray) – A 2D array of the Y coordinates of the part centered
at the current tool location.






	Returns

	A 2D array of velocity on the part surface.



	Return type

	numpy.ndarray

















          

      

      

    

  

    
      
          
            
  
Example 1

This example simulates a round orbital sander on a flat surface with a sinsoidal
motion in the X direction. The sander is set to have orbital speed, but no
rotational speed.

from context import mr_sim
import numpy as np
import matplotlib.pyplot as plt

R = 3.5 / 2 * 25.4 / 1000
length = 208 / 1000
period = 0.2 * 20
dt = period / 1000
dt = dt / 4
amp = length / 2

Simulation = mr_sim.create_simulation(
    mr_sim.Round, mr_sim.Flat, mr_sim.Orbital, mr_sim.Preston
)

simulation = Simulation(
    length + 2 * R,
    2 * R,
    kp=1.362e-9,
    radius=R,
    eccentricity=0.1875 * 25.4 / 1000,
    dt=dt,
    auto_velocity=True,
)

simulation.set_speed(620)
simulation.set_force(15)

for t in np.arange(0, period / 2, dt):
    simulation.set_location(amp * np.cos(2 * t * np.pi / period))
    simulation.step()

plt.figure()
simulation.plot()
plt.show()








          

      

      

    

  

    
      
          
            
  
Example 2

This example simulates a purely rotary tool on a flat surface traveling on a
Peano Weaving path.

from context import mr_sim
import numpy as np
from hilbertcurve.hilbertcurve import HilbertCurve
import matplotlib.pyplot as plt

R = 0.1
spacing = 1.75 * R
velocity = 0.1
dt = 0.05

Simulation = mr_sim.create_simulation(
    mr_sim.Round, mr_sim.Flat, mr_sim.Rotary, mr_sim.Preston
)

curve = HilbertCurve(3, 2)

points = np.array(
    [curve.coordinates_from_distance(d) for d in range(curve.max_h + 1)], np.float
)
points -= curve.max_x / 2
points *= spacing

t_final = curve.max_h * spacing / velocity
point_times = np.linspace(0, t_final, points.shape[0])
t = np.arange(0, t_final, dt)

path = np.vstack(
    (np.interp(t, point_times, points[:, 0]), np.interp(t, point_times, points[:, 1]))
).T

size = spacing * curve.max_x + 2 * R

simulation = Simulation(
    size, size, radius=R, dt=dt, dx=0.005, dy=0.005, auto_velocity=True
)

simulation.set_speed(100)
simulation.set_force(5)

for location in path:
    simulation.set_location(*location)
    simulation.step()

plt.figure()
simulation.plot()
plt.plot(points[:, 0], points[:, 1], ":w", linewidth=0.5)
plt.show()








          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       mr_sim	
       

     
       	
       	   
       mr_sim.base	
       

     
       	
       	   
       mr_sim.models	
       

     
       	
       	   
       mr_sim.pressure	
       

     
       	
       	   
       mr_sim.shapes	
       

     
       	
       	   
       mr_sim.types	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X
 | Y
 


A


  	
      	area (mr_sim.shapes.Rectangular attribute)

      
        	(mr_sim.shapes.Round attribute)


      


  

  	
      	auto_vel (mr_sim.base.Base attribute)


  





B


  	
      	Base (class in mr_sim.base)


  

  	
      	Belt (class in mr_sim.types)


  





C


  	
      	ConstantCurvature (class in mr_sim.pressure)


  

  	
      	create_simulation() (in module mr_sim)


  





D


  	
      	dt (mr_sim.base.Base attribute)


  

  	
      	dx (mr_sim.pressure.ConstantCurvature attribute)


      	dy (mr_sim.pressure.ConstantCurvature attribute)


  





E


  	
      	eccentricity (mr_sim.types.Orbital attribute)


  





F


  	
      	Flat (class in mr_sim.pressure)


  

  	
      	force (mr_sim.pressure.ConstantCurvature attribute)

      
        	(mr_sim.pressure.Flat attribute)


      


  





H


  	
      	height (mr_sim.shapes.Rectangular attribute)


  





I


  	
      	Ix (mr_sim.shapes.Rectangular attribute)

      
        	(mr_sim.shapes.Round attribute)


      


  

  	
      	Iy (mr_sim.shapes.Rectangular attribute)

      
        	(mr_sim.shapes.Round attribute)


      


  





K


  	
      	kp (mr_sim.models.Preston attribute)


  

  	
      	kx (mr_sim.pressure.ConstantCurvature attribute)


      	ky (mr_sim.pressure.ConstantCurvature attribute)


  





L


  	
      	local_grid() (mr_sim.base.Base method)


  





M


  	
      	mr_sim (module)


      	mr_sim.base (module)


      	mr_sim.models (module)


  

  	
      	mr_sim.pressure (module)


      	mr_sim.shapes (module)


      	mr_sim.types (module)


      	mrr() (mr_sim.models.Preston method)


  





O


  	
      	Orbital (class in mr_sim.types)


  

  	
      	orbital_speed (mr_sim.types.Orbital attribute)


  





P


  	
      	plot() (mr_sim.base.Base method)


      	pressure() (mr_sim.pressure.ConstantCurvature method)

      
        	(mr_sim.pressure.Flat method)


      


  

  	
      	Preston (class in mr_sim.models)


      	profile (mr_sim.base.Base attribute)


  





R


  	
      	r (mr_sim.shapes.Round attribute)


      	radius (mr_sim.shapes.Round attribute)


      	Rectangular (class in mr_sim.shapes)


  

  	
      	Rotary (class in mr_sim.types)


      	rotational_speed (mr_sim.types.Orbital attribute)


      	Round (class in mr_sim.shapes)


  





S


  	
      	set_curvature() (mr_sim.pressure.ConstantCurvature method)


      	set_force() (mr_sim.pressure.ConstantCurvature method)

      
        	(mr_sim.pressure.Flat method)


      


      	set_location() (mr_sim.base.Base method)


      	set_size() (mr_sim.shapes.Rectangular method)

      
        	(mr_sim.shapes.Square method)


      


      	set_speed() (mr_sim.types.Belt method)

      
        	(mr_sim.types.Orbital method)


        	(mr_sim.types.Rotary method)


      


  

  	
      	set_torque() (mr_sim.pressure.Flat method)


      	set_velocity() (mr_sim.base.Base method)


      	shape() (mr_sim.shapes.Rectangular method)

      
        	(mr_sim.shapes.Round method)


      


      	speed (mr_sim.types.Belt attribute)

      
        	(mr_sim.types.Rotary attribute)


      


      	Square (class in mr_sim.shapes)


      	step() (mr_sim.base.Base method)


      	stiffness (mr_sim.pressure.ConstantCurvature attribute)


  





T


  	
      	torque_x (mr_sim.pressure.Flat attribute)


  

  	
      	torque_y (mr_sim.pressure.Flat attribute)


  





V


  	
      	velocity() (mr_sim.types.Belt method)

      
        	(mr_sim.types.Orbital method)


        	(mr_sim.types.Rotary method)


      


  

  	
      	vl_x (mr_sim.base.Base attribute)


      	vl_y (mr_sim.base.Base attribute)


  





W


  	
      	width (mr_sim.shapes.Rectangular attribute)


  





X


  	
      	X (mr_sim.base.Base attribute)


  

  	
      	x (mr_sim.base.Base attribute)


  





Y


  	
      	Y (mr_sim.base.Base attribute)


  

  	
      	y (mr_sim.base.Base attribute)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          MR Sim
        


        		
          Example 1
        


        		
          Example 2
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





